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ABSTRACT

Given a function u(x) which is represented by its cell-averages in cells which are formed

by some unstructured grid, we show how to decompose the function into various scales of

variation. This is done by considering a set of nested grids in which the given grid is the

finest, and identifying in each locality the coarsest grid in the set from which u(x) can be

recovered to a prescribed accuracy.

We apply this multi-resolution analysis to ENO schemes in order to reduce the number of

numerical flux computations which is needed in order to advance the solution by one time-

step. This is accomplished by decomposing the numerical solution at the beginning of each

time-step into levels of resolution, and performing the computation in each locality at the

appropriate coarser grid. We present an efficient algorithm for implementing this program

in the one-dimensional case; this algorithm can be extended to the multi-dimensional case

with cartesian grids. Accesion For ,, ]
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1. Introduction

In this paper we consider the Initial-Boundary Value Problem (IBVP) for hyperbolic

systems of conservation laws in s-space dimensions:

ut+divf(u) =0, xd)C W, t >0 (1.1a)

u(x,0) = uo(x), xeD (1.1b)

with given boundary condition on O9D, the boundary of D. We assume that the problem is

well-posed and denote its evolution operator by E(t); note that it includes the influence of

the boundary conditions.

The computational domain D is divided into cells {Cj}

D=UC, CnflCk= for j-7k (1.2a)

and we assume that there is a refinement parameter h such that the largest sphere contained

in each of the cells is of radius O(h), and that the ratio between the largest cell to the

smallest one in the computational domain remains bounded under refinement.

Let ICjj denote

{ J dx (1.2b)

and let Uj denote the cell-average of u(x) over Cj

31 u(x)dx = (0 u(x); (1.3)IV, Ic,

here A(Cj) denotes the cell-averaging operator.

Given cell-averages U = { ju} of u(x) in D, we denote by R(x; U) an r-th order piecewise-

polynomial reconstruction of u from u, i.e.,

R(x;) = Ri(x;Tt) for x(C (1.4a)

where Rj(x; U) is a polynomial of degree r - 1. Expressing Ri(x; f) as a finite Taylor series

around the centroid ci = A(C) • x

r-1 1

Ri(x; U) = Do + j - (x -cX~t (1.4b)
k=1 kVI=k

where



helD - he --x(c) + 0(h'), 1 < el :< r - 1, (1.4c)

(accuracy)

Do = i - k E . [A(Ci) - (X - cX)] Dt (1.4d)

k=1 111=k

(conservation).

Note that (1.4d) implies that A(C) Rj(x;Ui) = Ui. In (1.4) we have used a multi-index

notation
f = ( V ,.. e,), V 1= + .+ f" i , 0)

with the standard convention

Oxe 04 *Ol"Y' = (Y x) "Y)" ' at = o@ ..

We consider the numerical solution of (1.1) by the class of schemes

v7+1 = A(C 3)E(r)R(.;v'), v = m(Cj)uo(x) (1.5a)

where v7 is an r-th order approximation to the cell-average of the solution u at time t,

v ' ;z - A (Cj).-u (x,t,.). (1.5b)

Due to the divergence-free form of the PDE (1.1), the scheme (1.5a) takes the conservation

form

7+1 = 1 J f(E(t). R(.; v')) • Ndsdt (1.5c)

where OC, is the boundary of the cell Cj and N is its outward normal. We refer the reader

to [3] for details.

The purpose of this paper is to present some preliminary results regarding the application

of multi-resolution analysis to the numerical solution of hyperbolic systems of conservation

laws. Typically these solutions contain discontinuities (shocks, sliplines, material boundaries,

combustion fronts) which may move around and also some localized high-frequency smooth

behavior which is associated with shedding of vortices. In such situations we have to use a

fine grid in order to resolve the details of discontinuities and vortices, while in other parts of

the solution the use of a coarser grid is adequate.

The traditional solution to this computational problem is to use a nonuniform adaptive

grid where at each time-step the discretization points are redistributed with the goal of min-

imizing the truncation error of the scheme. In the context of the schemes (1.5) this means

that the cells (s = 0 are redefined at each time and that their size is highly nonuniform:
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they are very small around discontinuities and rapid smooth variation of the solution, and a

lot larger elsewhere. This is certainly a reasonable solution to this computational problem

and there are several such computer codes that accomplish this goal successfully. How-

ever, the adaptive grid approach is complicated and the programming effort required for its

implementation is formidable.

In the following we describe our concept of multi-resolution analysis which is borrowed

from the realm of image-compression techniques. There the functions are defined on a

uniform fine grid and are assumed to be over-resolved in some parts of it. The purpose

of the multi-resolution analysis in image compression is to determine appropriate levels of

resolution for the various parts of the image in order to eliminate superfulous information.

In the context of the numerical solution (1.5) this means that our computational grid (1.2) is

rather uniform with respect to the parameter h and is assumed to be fine enough to capture

all the details that we are interested in, and that the solution is in fact over-resolved on

this fine grid in large parts of the computational domain. In order to apply multi-resolution

analysis we construct an hierarchy of nested grids as follows:

Given cells {C } of size hk and cell-averages (1.3) {1 i} of u(x) on them, we define a

coarser grid {C}f "' } of size hk+l > hk by joining some of the cells in the k-th grid into a

single larger cell

Ck + 1 =UjCk (1.6a)

and define
-iIV;lu. (1.6b)

U IC I +11jl

The original grid is thus the finest in the hierarchy, and we denote its cells by {C} and their

size by h0 = h. To each of these grids we can apply the reconstruction (1.4) which we denote

by Rk(x;u) and also apply the numerical scheme (1.5) in order to advance its solution in

time.

What we mean by multi-resolution analysis is the assignment k(i) such that

IIk(i)(X;-) -R(x;-d)l <e for xcC °  (1.7)

where k(i) is the largest integer for which (1.7) holds. In Section 2 we shall describe a method

to determine k(i).

The general idea is to use a multi-resolution reconstruction R?(x; Ti) which is defined on

the finest grid by

i?(.r;7 U- =tkR Z() for X(CO (1.8a)

and to consider the numerical scheme

Un +1 = A(C°)E(7)R(.;v ). (1.Sb)
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We observe that the scheme (1.8) can be thought of as an adaptive-grid calculation in which

the cells are a combination of cells of various scales. We would like to avoid this interpretation

because of its inherent complexity, and we look for a simple implementation.

In Section 3 we develop such an implenientation by studying a related problem and in

Section 4 we describe an efficient multi-resolution ENO scheme for the one-dimensional case.

In Section 5 we summarize the present state of affairs and point out directions for future

development.

2. Determination of Resolution Levels

In this section we describe how to decompose a given set of cell-averages {77j} of a function

u(x) over cells {Cj } of size h into a set of scales

h = ho < h, < .. < hK (2.1a)

given by the hierarchy (1.6). This is done by determining the larg.st k = k(i) so that

Ik (x;;) - Ri(X;U)l < 6 for xeCi (2.1b)

for a prescribed level of accuracy . Ilere H,(x; U) is the polynomial of degree r - 1 in (1.4)

and Ik(,;77) is the reconstruction which is associated with the scale hk.

First let us describe the way in which the reconstruction R(x; U) is defined for the given

grid. Expressing I,(x; -) as a finite Taylor series around the centroid ci (1.4b) we have to

find coefficients { D1.0 < I(I < r - 1 which satisfy the requirements (1.4c) - (1.4d). Let us

denote by d tlhe vector of unknowns

{h1Di}, 0 < r - (2.2)

which are ordered in groups of equal 1(1 with ]I( = 0, 1, r- 1, and denote by K = K(r) the

number of unknowns in (2.2). In [3] we show how to select a stencil of K cells with indices

J(i) (including i ) so that the relations

A((,J) .H,(x; ) = Tj, jJ(i) (2 .3 a)

result iM an iiver ible syst(mi of linear equnations

Qd = J. (2.3b)

lHe re Q is the nmatrix w ii li ct ri(es - . c)'/? f (2 .4a)

A((', )~~.1- , h 1 (.,



and U is an appropriate ordering of the RHS of (2.3a). Note that due to the scaling in (2.2),

the entries of the matrix Q (2.4a) are 0(1) under refinement and consequently

11Q I1 < const. as h -- 0. (2.4b)

In [3] we consider two cases: (1) a fixed choice of a centered stencil J(i) which results in

an upwind biased "linear" scheme (1.5); (2) an adaptive choice of stencil J(i) = J(i; vn)

where the stencil selected is the one in which u(x) is the smoothest among several candidate

stencils. This adaptive selection results in an ENO scheme (1.5).

We turn now to describe the decomposition into scales (2.1). For k = K, K - 1,..., we

check whether

max IA(Cj). Rk(x; -) jl < 6(6); (2.5)
jcj(i)

k(i) is the largest k for which (2.5) holds. Next we show that (2.1b) holds for an appropriate

choice of 6(E). Let us rewrite the polynomial of degree (r - 1) Rk(x; U) as a finite Taylor

series around the centroid ci as in (1.4b) and denote the vector ordering of its coefficients

(2.2) by d. We denote by fk the vector ordering of

k = A (Cj).- R'(x;7U), j J (i) (2.6a)

as in (2.3a). Clearly

Qd= a (2.6b)

where Q is the matrix in (2.3b). It follows therefore that

Q(d- d) = I- k, (2.6a)

id - dll - 11Q 1 II11f- kl- 11Q- 1 116(E) (2.7a)

and consequently
rnax IRk(x; U) - R,(x; 7)1 _ CIIQ-1'16(E) (2.7b)
xr C,

where lx - cile.7c
C = max max (2.7c)

1<1i1<r-1 xc, hVil

and ii is the fl-norm. We note that the terms C and IIQ-'I1 in (2.7) depend on the geometry

of the cell and of the stencil J(i), respectively.

Up to this point we have dealt with the concept of multi-resolution analysis in the context

of approximation of functions. We turn now to consider its application to the numerical

solution of the IBVP (1.1) by the scheme (1.5). Given {v}, the cell-averages of the numerical
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solution at time t, over the cells {Cj}, we apply the multi-resolution analysis (2.5) to find

k(i) and define the multi-resolution reconstruction /(x; v) (1.8a) by

R(x;v') = Rk(i)(x;vn) for xeCi (2.8a)

and consider the numerical scheme

Vn+ = A(Cj)E(r)P(x;v'). (2.8b)

We observe that due to the well-posedness of the problem

IIE(r)R(x;v'") - E(r)R(x;vn)ll const.llR(x;v0) - R(x; v) (2.8c)

and therefore the deviation of the values computed by the multi-resolution scheme (2.8)

from those of the original scheme (1.5) is of order e. Roughly speaking, all the values vj + '
in (2.8b) for which k(j) = ko can be obtained from the calculation on the coarse grid k0 by

v, 1 = A(Cj)E(r)RkO(x;vn), k(j) = ko. (2.9)

What we need now is an efficient algorithm that will enable us to perform the computation

in (2.8) using the appropriate coarse grid calculations (2.9) at the computational cost of a

corresponding adaptive grid implementation without its inherent complexity. To get ideas

for such an algorithm we consider a related computational problem in the next section.

3. A Related Problem

In this section we consider the problem of computing discrete values of a composite

function #(v(x)), where v(x) is a function of the type that we encounter in the solution of

hyperbolic conservation laws (1.1), i.e., it is piecewise smooth with different scales of smooth

variation. The function 0(v) is a model for the numerical flux in (1.5c). We assume that

0(v) is a smooth function of v which is expensive to compute, e.g.,

¢(v) = J g(v, x)dx (3.1)

with g(v,x) that depends smoothly on v.

In this model problem we assume that v(x) is defined in [0,1] and its discrete values are

given on the uniform grid

G'o = {xj}", x, = 2 j vj = v(xj. (3.2a)

We assume that the grid (' is fine enough to resolve v(x) to our satisfaction, and that in

fact v(x) is over-resolved in some parts of the grid. Our task is to find an efficient algorithm
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to obtain values q9, 0 <j < 2" which approximate O(v(xj)) within a specified tolerance

of error -, i.e.,

A -¢(VA < E. (3.2b)

We consider the nested set of grids {Gk}, 0 < k < K, which is defined by

G
k  
{j~jjkjk =-f kt 2j - 1

G' = =xJkJk {2 e}t=o (3.3a)

in which Go is the finest (given) grid and GK is the coarsest; let hk denote the spacing of

points in the grid Gk

hk = 2k - J  (3.3b)

Clearly

Gk nl Gk - = Gk = {x2e} 21Jk-1, (3.3c)

Gk- 1 - Gk {X2e1-}( 2 1 )fJk-1. (3.3d)

The restriction vk = {Vj}jjk of the values {vj} to the grid Gk constituies a level of

resolution of v(x) which corresponds to the scale hk.

We begin the computation on the coarsest grid GK by calculating the values jj<

from the given "expensive" expression, say (3.1)

OK" = O(vj), jK.(3.4)

Then for k = K,..., 1 we use the already computed values qk on the grid Gk to obtain

acceptable approximate values €k-1 of O(v(x)) on the finer grid Gk- , as follows:

At all points (3.3c) which are common to both grids, we retain the already computed

values

2 1 , 26Jk- (3.5a)

The points (3.3d) are the ones added to Gk by splitting each of its intervals into two. At

each such middle point, we make a decision whether to compute 0 directly, i.e.,

A-1

V v-1 = ¢(VV-), (2f - 1)cJk-  (3.5b)

or to approximate € there by interpolation from the grid Gk, i.e.,

- (x ;k), (2f - 1 ) Jk - . (3.5c)

We elect to interpolate (3.5c) wherever it can be ensured that the interpolated value of ¢ is

accurate to a prescribed tolerance Ek-I

V- < E 1 (2f - 1)Jk - ' (3.5d)



The basic idea behind this algorithm is that 0(vj) is to be computed directly until the

prescribed level of resolution implied by (3.2b) is obtained. Once the required level of

resolution is achieved in a certain locality we cease to use the expensive direct computation

and the values of 0 are transferred to finer grids by interpolation (which is assumed to be

considerably less expensive). The basic assumption is that 0(v) is smooth and does not

vary much in [minv(x),maxv(x)]. Thus the quality of approximating ¢(v(x)) on Gk by

interpolation from the coarser Gk is determined up to a scaling factor by the error in doing

so for v(x). Since v(x) is given on all grids, our success in interpolating vk - l from vk can be

easily measured. The criterion for acceptable interpolation is formulated by

max jI(xj+,; vk) - vj+e < 6k = II(xj; O(vk)) - O$(vj)I < -k (3.6a)

Here the "max" denotes checking the quality of the interpolation at the point jjk-1 (j = 0)

and possibly at neighboring points of the finest grid (f = ±1,...). 6 is the corresponding

tolerance for the v-interpolation, and it is to be determined by analytical methods.

We recall that the values of o k that are actually used in the interpolation (3.5c) are an

Ek approximation to the exact values 0(v'), thus

I(x; Ok) - I(x; ¢(vk))l < Ck 'k, (3.6b)

and therefore in (3.5d)

lI(wj; ¢k) - O(VG)l < II(xj; Ok) _ I(xj; O(vk))l + JI(XK; O(vl)) - O(vj)l _ (1 + Ck) • El. (3.6c)

Consequently the tolerance levels {ek,} satisfy

0 = E > j > ... > E/,- = 0, (3.7a)

(1 + Ck) - < -k-1. (3.7b)

We turn now to consider the practical implementation of the nmulti-resolution algorithm

(3.4) - (3.6). The computational effort of executing it is composed of N(1 - 2
- K"- ) checks,

A! < N direct calculations of 0 and (N - Al) interpolations of 0; N = 2". The number

of checks is fixed and is almost N, so we want to make the test in (3.6a) as simple as

possible. On the other land we wish to reduce Al, the number of direct evaluations 0(v);

this calls for an elaborate test so as to not miss points in which interpolation is acceptable.

These considerations lead to a compromise in the level of sophistication to be used in the

interpolation I(x, v k ) and I(x; Ck). The simplest and least expensive interpolation is based

on the use of a fixed central stencil. lowever, v(x) is a discontinuous function and using

a fixed central stencil means that we shall miss all the points near the discontinuity which



otherwise could be well-approximated by the more expensive ENO interpolation that uses

an adoptive stencil [1], [2]. Investing even more in an ENO interpolation by using subcell

resolution [4] will enable us to get a good approximation een in a cell which contains a

discontinuity.

A reasonable strategy is to use a hierarchy of checks: first to try the simplest interpolation

with fixed central stencil which is a good enough test for most of the domain. If the test in

(3.6a) fails for the simple interpolation we may try to get an acceptable approximation by an

ENO interpolation. Ii, cases where the computation of 0(v) is so expensive that it justifies

an additional investment in checks, we may try to use also a subcell resolution approach.

4. Multi-Resolution for One-Dimensional Conservation Laws

In this section we present a multi-resolution algorithm for the solution of one-dimensional

hyperbolic conservation laws which is motivated by the algorithm (3.4) - (3.6) for the model

problem.

We consider the IBVP for the one-dimensional conservation law

(it+ f(u) = 0, 0< X<l1, t >0 (4. 1a)

u(x,0) = Ito(x), 0 < x < 1 (4.1b)

with appropriate boundary conditions at x = 0, x = 1.

We discretize functions in [0,1] by taking their cell-averages on the grid G o (3.2a)

-Fij = A([xj-1, xj]) . u(t), 1 j < 2J .

Given cell-averages Tt {z; }jj we consider the reconstruction R(x; U) which is defined

in a piecewise manner in [0,1] and satisfies

I?(x; Tt) = u(x) - -0(h'), wherever u(x) is smooth, (4.2a)

A([xxj]).R(x;f ) =j, 1 < j < 2g. (4.2b)

We use the numerical ,hene (1.5) which can be written in this case as

vn + ' = A([x 3_, xl]). E(r) . R(x; v), v A([x j ,, j]) . uo(x), 1 < < _2 J,  (4.3a)

and has the conservation form

fn

J, ,- Ao(fj - fj-1), Ao = /ho (4.3b)

with the numerical flux

f o - f(E(t). Rl,,)dt. (4. 3c)
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Note that the computation in (4.3) is to be performed with A0 which is restricted by the

CFL condition, and that f0 and 72- include the influence of the corresponding boundary

conditions at x = 0 and x = 1.

In solving one-dimensional problems, as well as in multi-dimensional problems on carte-

sian grids, it is convenient to work with the primitive function

tU,(X, 0) u ( , t) d . (4.4a)

Since

h- U(xj,t,)] = (4.4b)

-[U(xj, t, + -r) - U(xj, t)j =j, (4.4c)

it is convenient to define the reconstruction R(r, vn) by

-,r')= I(X; U' )  (4.5)
dx

where I(x; UT") is a piecewise interpolation of {U(x,, t)} (see [2]) and to compute the nu-

merical fluxes from (4.4c).

\Ve turn now to describe a miulti-resolution algorithm for carrying out the computation

of the numerical solution (.1.3). Ve are given ," = {,},jjjo on the grid G' and our task

is to compute all the niiinerical fluxes {f } on this grid within a prescribed tolerance for

error. Our basic assumption is that the solution is wel-resolved on the grid G', and in fact it

may be over- resolved in some parts of it. The computational task is thus similar to the one

entailed in the nodel problm, except that here fj is really a functional of u(x, t,) and not a
function like 0(v(x)) in Section 3. W\e use the same set of nested grids (3.3) G", 0 < k < K,
and initialize the algorithm by evaluating fj in (4.3c) on the coarsest grid G K. These fluxes,

which we denote by
fj = f(c' ),, J gt,, (4.6)

are actually an r-th order approximation to (4.3c) which uses the reconstruction R(x; vn ) of

the finest grid G. Thus we use the sane numerical fluxes that we would use in a straight
forward fine grid calculation, except that these fluxes are computed only in the few locations

which correspond to the coarsest grid G .

The algorithin for the numerical flux computation proceeds in analogous way to (3.5).

For A,"= K .... 1 we use the already computed values of the numerical flux Ik on the grid
Gk to obtain acceptable values 7f- I on the finer grid G k- as follows:

At all points (3.3c) which are common to both grids we retain the already computed

values

f 2V = f2 (4.7a)

10



At the new middle points (3.3d) we make a decision whether to compute the numerical
flux directly

--k-1 = -(v') 21_ , (2f - 1 ) Jk
-1  (4.7b)

-k
or to approximate it by interpolation of f , the already computed values of the numerical

flux on the grid Gk
7 k-1 7) Ck1

f2e1 -1, (2f - (4.7c)

The decision whether to interpolate or compute at a certain locality depends on whether
we can obtain the prescribed accuracy for the numerical flux from the level of resolution
which is offered by the grid Gk. As is indicated by (2.8c), the error

-k I (4I8a
fj - -f -T  (E(t) .Rk,) f(E(t) .RjI,,)]dt (4.8a)

-k

which is committed by replacing the exact numerical flux (4.3c) by f, the numerical flux

corresponding to the level of resolution which is available in Gk, can be bounded by the
corresponding error in reconstruction

max IRk(x;v) - R(x; v)1 _R (4.8b)

In the constant coefficient case f(u) = au, we get

Iefl < jai Io IRk(xj - at; 0) - R(xj - at; v )ldt < la IE, (1.9)

and similar estimates can be obtained in the general nonlinear case. As is indicated by (2.5)

and (2.7), e (4.8b) can be estimated from s

Ej = ,,(max IA([xi_,x,]). Rk(x; v') - vI. (4.10a)

This check is foolproof but expensive. In our numerical computations we have experimented

with a simplified version of (4.10a)

, = max{IA([xi-, xy]). Rk(X; v,) - Z;T, A([x 1 ,xj+i]). Rk(x; v') - v+ 11} (4.10b)

which takes into account only the two adjacent fine grid intervals that determine the numer-

ical flux at xj. These numerical experiments indicate that the test (4.10b) may be adequate

enough.

From our numerical experiments we have also learned that it is better not to interpolate

the numerical fluxes directly (4.7c), but rather use the following indirect way: Given 7k we

can compute vn+ ',k, the cell-averages at time tn+l on Gk by

?,+,k ,n,k - (-k -k ik(- (f - fJ-2), J ' (4.11 a)
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From vn+ lk we get the values of the primitive function Ujn+I 'k by using the relation (4.4b).

Using interpolation I(x; U ' + ',k) for the primitive function at time t,+, and possibly a dif-

ferent interpolation J(x; Un' k) for the primitive function at time t,, we can now obtain the

value of the numerical flux at the middle points (3.3d) from the relation (4.4c). Thus we

replace (4.7c) by

k-i U+l,k) _ Un)]
V-= 1 (xVe-,; _(x2 ;Uk)], (2f 1 ) Jk1 (4.11b)

We remark that unlike the model problem of Section 3, the computation of the numerical

flux involves propagation of discontinuities. Consequently a stencil of cells which did not

contain discontinuities of u(x, t,,) may contain a discontinuity of u(x, t,+,) at its two extreme

cells. To overcome this problem we use a central stencil for R k in the test (4.10b) and for the

interpolation j for the primitive function at time tn; in order to account for the movement

of discontinuities we take I in (4.11b) to be an ENO interpolation for the primitive function

at time t,+ +.

5. Summary

This work on multi-resolution analysis has been motivated by the current interest in

wavelets. The concept of wavelets has developed into a beautiful theory which is rich in

structure. The endowment of wavelets with many properties is also their main handicap when

it comes to practical computations: Indeed wavelets are more local than Fourier analysis,

but " j ....'r il' ' al. T1, (I sire to hax, an orthonormal basis with wavelet functions

of compact support results in wavelet functions which are of fractal nature. The attempt to

make these wavelet functions smoother results in considerably enlarging their support.

In the present work we have attempted to take from wavelet only its most important

idea - the multi-resolution analysis - and to strip it of any other structure. In doing so we

have developed a multi-resolution analysis which is devoid of beautiful theory, but we have

gained flexibility and the ability to adapt locally. Given a function 11(x) which is represented

by cell-averages on an arbitrary partition into cells, we have shown how to decompose it into

various scales. This ge,,eral method provides a very useful tool for removing superfulous

information, especially when the data is only piecewise smooth, e.g., application of this

methodology to image-compression has proven to be very successful.

We remiirk that this niulti-resolution analysis can be easily extended to functions u(x)

which are represented by point-values on an unstructured grid. The reason for presenting

only the cell-average version is that we wish to combine multi-resolution analysis with high

order of accuracy. and this forces us to choose the scheme (1.5) for accurate cell-averages.

We cannot use point-value schemes which are both high-order accurate and in conservation
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form. The need to fictitiously write f. in (4.1a) as a difference of a numerical flux results in

a strong dependence of the numerical flux of the point-value scheme on the spacing of the

grid. Consequently we cannot retain the already computed numerical fluxes on the grid Gk

when refining to Gk - 1 (4.7a) for point-value schemes with order of accuracy larger than 2.

The multi-resolution analysis presented in this paper has points in common with both

multi-grid and adaptive-grid methods. It resembles multi-grid in its use of nested grids.

However multi-grid is primarily an iteration scheme which is designed to accelerate con-

vergence, while multi-resolution is primarily a data-compression scheme which is designed

to avoid superfulous computations by discarding insignificant information. Its goal is the

same as that of adaptive-grid methods but it differs in its concept: Adaptive-grid methods

tell you where to refine the iesh, while multi-resolution analysis tells you where not. The

difference in the pracuical inplementation of the two concepts reminds one of the difference

between shock-fitting and shock-capturing. In adaptive-grid methods you have to worry

about missing spontaneously generated features. On the other hand you can do an optittial

job in resolving features that you know of, although at the cost of complex programming.

In multi-resolution methods you cannot miss new features because conceptually we always

compute on a fine enough grid. The main issue is efficiency: You want to make sure that

you do not compute on too fine a grid, when you do not have to. An additional advantage is

the automatic way in which the data is handled in multi-resolution analysis which translates

into simplicity of programming.

The one-dimensional algorithm of Section 4 can be extended in a straightforward way to

the multi-dimensional case with cartesian grids. Based on our one-dimensional results we

are led to believe that realistic savings by factors between 10 to 100 are quite possible in the

three-dimensional case.

1:3
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